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A theoretical formalism to predict the structure factors observed in dipolar soft-sphere fluids based on a
virial expansion of the radial distribution function is presented. The theory is able to account for cases with and
without externally applied magnetic fields. A thorough comparison of the theoretical results to molecular-
dynamics simulations shows a good agreement between theory and numerical simulations when the fraction of
particles involved in clustering is low; i.e., the dipolar coupling parameter is ��2, and the volume fraction is
��0.25. When magnetic fields are applied to the system, special attention is paid to the study of the anisotropy
of the structure factor. The theory reasonably accounts for the structure factors when the Langevin parameter
is smaller than 5.
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I. INTRODUCTION

Ferrofluids are colloidal suspensions of ferromagnetic
nanoparticles. The magnetic core of the particles is suffi-
ciently small �typically 10–20 nm� for them to consist of
magnetic monodomains characterized by a permanent dipole
moment. The magnetic cores are usually stabilized against
aggregation by steric coatings �in nonelectrolyte solutions� or
by electrical double layers �in aqueous solutions�. The
changes in an external magnetic field of some of the proper-
ties of ferrofluids such as viscosity, phase behavior, or their
optical birefringence make them useful in many areas, rang-
ing from engineering, to biomedical applications, i.e., cancer
treatment �1–5�. They are also of particular interest as mod-
els of dipolar fluids.

Despite the differences in sizes and magnetic materials
that can be used to make ferrofluid particles �2,6�, the behav-
ior of a monodisperse ferrofluid system can be characterized
by two dimensionless parameters: the volume fraction of par-
ticles �=Nvp /V �where N is the number of particles, vp is
the volume of a particle, and V is the total volume of the
system�, and the dipolar coupling parameter �=0.5Udd /kBT,
where Udd is the interaction energy of two particles in head-
to-tail contact. When a uniform stationary magnetic field H
is introduced, a third dimensionless parameter, the Langevin
parameter ��mH / �kBT� �where m is the typical magnetic
dipole of the particles� is needed to characterize the system.
The use of �, �, and � allows a generalized description of
ferrofluid systems.

Experiments �7–10�, theories �11–23�, and simulations
�24–35� have shown that for values of � and � large enough,
the ferrofluid particles tend to organize into many different
types of aggregates, i.e., chains, rings, branched structures,
and networks. For ��4 and sufficiently large values of � the
formation of branched clusters and network aggregates is
still poorly understood. The formation of aggregates as well
as the related structure factors in three-dimensional systems
in the regime �� �2,4� has been studied recently using a
new theoretical formalism that is capable to reproduce to a
large extent the results observed in numerical simulations
�36�.

In the nonaggregating regime ��2, the physical proper-
ties of very diluted systems ��→0� are well described using
the framework of the one-particle model �37�, which treats
the ferrofluid as an ideal paramagnetic gas of particles sus-
pended in a liquid carrier. However, this model breaks down
when either the particle concentration or the strength of the
dipole-dipole interaction is increased.

Despite the fact that aggregates are negligible, correla-
tions among particles exist. Several theoretical models have
been proposed in order to explain the magnetic properties of
nonaggregating ferrofluids which are based on adapted ver-
sions of the mean-field �38,39� and mean-spherical �40–45�
models, as well as the thermodynamic perturbation model
�46,47�. In this regime, structure factors determined experi-
mentally are a valuable source of information �10,48–50�,
but it is difficult to extract from them a detailed knowledge
about the correlations of the ferrofluid particles. Thus, theo-
retical methods that can relate the observed structure factors
to the interparticle correlations in the ferrofluid are desirable.
In order to explain the observed radial distribution functions
and structure factors a theoretical framework has been re-
cently proposed �51� for the case of dipolar hard spheres
�DHS� at zero field in the low-coupling regime ��2. How-
ever, that model has not been stringently tested against nu-
merical results.

In this paper we extend the previous approach �51� to the
case of DHS in an externally applied magnetic field, and
subsequently we also extend it to the case of dipolar soft
spheres �DSS� ferrofluids in zero and nonzero fields. The
interaction between DSS particles is modeled as the sum of
two pairwise potentials: a soft-core plus a dipole-dipole in-
teraction. The soft-core interaction is a cut-shifted Lennard-
Jones potential �52�, also called Weeks-Chandler-Andersen
�WCA� potential �53�, of the form

Uss�rij� = ���1 − 2� �

rij
	6
2

, rij � 21/6�

0, rij � 21/6� ,
� �1�
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where � has the meaning of an effective ferroparticle diam-
eter including steric shell, and the energy parameter � de-
scribes the shell hardness, Uss�rij =��=�. The point dipole-
dipole potential is

Ud�ij� = − �3
�mi · rij��m j · rij�

rij
5 −

�mi · m j�
rij

3 
, rij = ri − r j .

�2�

The latter is of noncentral character, since it depends not
only on the interparticle distance rij but also on the mutual
orientation of the magnetic moments of the two particles. In
terms of the potential parameters, the dipolar coupling con-
stant � can be rewritten as �=m2 /�3kBT. The extension of
the theory for DHS to DSS systems is done by using an
effective hard-sphere diameter mapping. The predictions of
the theoretical model are then thoroughly compared to the
results of molecular-dynamics �MD� simulations. Special
emphasis is given to the study of the anisotropy of the struc-
ture factor in the presence of magnetic fields.

The theory is presented in Sec. II. After a brief summary
of the results already obtained for the DHS model �Sec. II A�
at zero field, the theory is extended to the case of an exter-
nally applied magnetic field in Sec. II B and to the DSS
model in Sec. II C. In Sec. III, details about the MD simula-
tions for generating the test cases for the theoretical model
are given. A stringent comparison between theory and simu-
lation is presented in Sec. IV. Finally, the main conclusions
are summarized in Sec. V.

II. THEORETICAL MODEL

A. DHS pair distribution function: Zero magnetic field

The simplest theoretical model for a ferrofluid consists of
a system of monodisperse DHS with diameter d and constant
magnetic moment m. The location of each ith particle and the
orientation of its magnetic moment mi=m�i are defined by
the radius vector ri�ri ,	i ,�i� and by the vector �i�
i ,�i�,
where 
i is the zenith angle and �i is the azimuth angle of the
orientation vector. The interparticle interaction energy U�ij�
consists of two parts: the hard-sphere interaction

Uhs�rij� = �� , 0 � rij � d

0, rij  d
 �3�

and the dipole-dipole interaction given by Eq. �2�.
Interparticle correlations are described by the pair distri-

bution function g�rij ,mi ,m j� which gives the probability
density for the mutual position and orientations of two ran-
domly chosen particles i and j. So, in general the DHS pair
distribution function depends on the vector rij, connecting
the centers of these particles, and the magnetic moments of
the particles, mi and m j. In the absence of an applied mag-
netic field the ferrofluid is isotropic, and the radial distribu-
tion function g�rij�, averaged over all possible orientations of
both magnetic moments, can be considered as

g�rij� � �g�rij,mi,m j��ij �� d�i� d� jg�rij,mi,m j� ,

d�i = �4��−1 sin 
id
id�i. �4�

It should be remarked that at high densities ��3�0.94,
where � is the number density, strongly dipolar fluids of
spherical particles have been predicted to exhibit a spontane-
ous long-ranged orientational order in the absence of an ap-
plied field �54,55�. Nonetheless, our assumption of an isotro-
pic system in the absence of magnetic field can be
considered adequate because we apply the theory to systems
with much lower densities ��3=6� /��0.48. To obtain the
radial distribution function we use a viral expansion in terms
of the ferroparticle volume concentration � �56�:

g�r12� =�exp�−
Uhs�r12�

kBT
−

Ud�12�
kBT



��1 + �

p=3

�

�p�12��p−2
�
12

. �5�

The dominant Boltzmann term exp�−Uhs�r12� /kBT
−Ud�12� /kBT� takes into account only the direct correlations
between two particles. Each coefficient �p�12� describes the
influence of other p−2 particles on the probability density of
the two first ones. These coefficients are defined by the
p-particle cluster integrals based on a diagrammatic expan-
sion method �56�:

�p�12� =
1

�p − 2�!� dr3 . . . drp� d�3 . . . d�p�
�

S��� fkl��
,

dri = ri
2dri sin 	id	id�i, �6�

where S� are the number of diagrams with the same topology
�, and the Mayer functions fkl=exp�−U�kl� /kBT�−1 depend
on the interaction potential U�kl� between particles k and l.
The integration over drk corresponds to averaging over the
position of the kth particle, and for each coefficient �p�12�
this averaging should be made over positions from the third
to the pth particles.

For real ferrofluids with typical ferroparticle size d
�10 nm the dipolar coupling constant is of the order of
unity, ��1. In the low-coupling regime, it is reasonable to
expand Eq. �5� in a power series over �. At zero magnetic-
field strength the averaging over the orientations of particle
magnetic moments gives immediately

�Ud�ij��ij = 0, �Ud�ij�Ud�jk��ijk = 0, �Ud�ij�Ud�kl��ijkl = 0,

��Ud�ij�
kBT


2�
ij

=
2�2

3
� d

rij
	6

.

Therefore, the nonvanishing contributions in Eq. �5� are
of order ��2. Restricting our analysis to �2 and �2 terms in
the virial series, we get for the orientation-averaged radial
distribution function
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g�r� = exp�−
Uhs�r�

kBT

��1 +

�2

3r6	�1 + hhs�r,���

+ �2��3
d�r� + �2�2�4

d�r� . �7�

From now on, distances are measured in units of the particle
diameter: r=r12 /d. The expression �1+hhs�r ,��� is the hard-
sphere radial distribution function, which can be found, for
instance, with the help of the Perkus-Yevick approximation
�56–58� or the virial expansion �59�. The functions �p

d�r�

take into account the dipole-dipole interparticle interaction,
and the three- and four-particle contributions were first cal-
culated in Ref. �51�:

�3
d�r� =

1

3�
0, 0 � r � 1

r�3r3 + r2 − 12r − 12�
�r + 1�3 , 1 � r � 2

−
16

�r2 − 1�3 , r  2, �

�4
d�r� =

1

3�
0, 0 � r � 1

6 ln� �r + 2�3r2

64�r + 1�2
 +
1

10r2�r + 2��r + 1�3 �9r10 − 15r9 − 219r8 − 42r7 + 1148r6�

� + 1051r5 − 555r4 + 124r3 + 1187r2 + 162r − 240� , 1 � r � 2

6 ln� �r + 2�3

4r2�r + 1�2
 −
1

10r2�r2 − 1�3�r + 2�
�9r13 − 42r12 − 147r11 + 861r10 + 112r9 − 4768r8 + 2382r7�

� + 9478r6 − 6823r5 − 8406r4 + 7153r3 + 5357r2 − 366r + 240� , 2 � r � 3

6 ln� �r2 − 4�3

r2�r2 − 1�2
 +
1

r2�r2 − 4��r2 − 1�3 �60r8 − 282r6 + 446r4 − 152r2 + 48� , r  3.

�
�8�

Looking at the radial distribution function �7�, we could
say that the first terms are formed by the hard-sphere radial
distribution function exp�−Uhs�r� /kBT��1+hhs�r ,��� with ad-
ditional short range influence of the dipolar factor ��2 /r6.
The three-particle contribution �3

d�r� results in the growth of
first peak �r�1� and the appearance of the first minimum
�r�1.5�. The four-particle term �4

d�r� tends to further deepen
this minimum and leads to the formation of a second maxi-
mum �r�2� in the second coordination sphere. Therefore,
the short range ordering in dipolar fluids is governed by both
the hard-sphere part and the dipole-dipole interaction.

B. DHS pair distribution function: Nonzero magnetic field

Now let us consider the case of an externally applied
magnetic field. Evidently, an applied field induces anisotropy
in ferrofluid. We have chosen the shape of the ferrofluid con-
tainer in such a way that the influence of the demagnetization
field can be neglected, namely, we consider the shape of an
infinitely elongated ellipsoid of revolution �the ratio of the
minor to major ellipsoid semiaxis should tend to zero�
stretched along an external uniform magnetic field H. For
this case the external magnetic field coincides exactly with
the internal one, and the demagnetization factors do not need
to be taken into account. We use a Cartesian �x ,y ,z� coordi-
nate system with the z axis oriented parallel to the major axis
of the ellipsoid, that is, H �Oz; the angles �i ,�i denote the
azimuth angles in the plane �x ,y�; and the angles 	i ,
i are

the zenith angles between the vectors ri ,�i and the z axis
�direction H�.

The magnetic field gives rise to a magnetic interaction
energy Um�i�=−�mi ·H�. Therefore, the averaging over the
ith magnetic moment orientations should include the one-
particle orientational distribution function:

�f��i��i =
�

sinh �
� d�i exp�� cos 
i�f��i� , �9�

where �=mH /kBT is the Langevin parameter and � /sinh���
is the normalization factor. The previous equation is in fact
the definition of the averaging operator for an arbitrary func-
tion f��i� in the presence of a field.

Due to the anisotropy, the radial distribution function �4�
is no longer rotationally invariant and becomes dependent
on the direction of the vector rij. According to Eq. �9� the
averaging of the dipole-dipole potential Ud over orientations
of the magnetic moments gives a nonzero linear term in �,
which depends on the squared Langevin function L���
=coth �−1 /�:

�−
Ud�ij�
kBT

�
ij

= �L2����3 cos2 	ij − 1�� d

rij
	3

, �10�

where 	ij is the angle between vector rij and the direction of
the magnetic field H. At low and moderate magnetic fields
this linear term is the dominant contribution to the pair dis-
tribution function, and we do not consider the quadratic
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terms in �. As a result the pair distribution function is pro-
portional to �L2���:

g�r,	� = exp�−
Uhs�r�

kBT

��1 + �L2���

3 cos2 	 − 1

r3 +
�2

3r6	
��1 + hhs�r,��� + ��L2���

3 cos2 	 − 1

r3 �3
df�r�

+ �2��3
d�r� + �2�2�4

d�r�
, 	 � 	12, �11�

where the function �3
df�r� is calculated in the same way as in

zero-field case �6� by averaging over all positions and orien-
tations of the third particle in a field �60�:

�3
df�r� = �0, 0 � r � 1

− 3r4 + r6/2, 1 � r � 2

− 16, r  2,
� �12�

where the superscript df stands for “dipoles in a field.”
Hence, in the framework of the considered approximation
the anisotropy of the pair distribution function is described
by the second Legendre polynomial over 	. Moreover, these
contributions are long ranged and decay rather slowly
��1 /r3.�

The field-induced anisotropy of the DHS pair distribution
function is presented in Fig. 1. Plots �a�–�c� correspond to
the case �=1 and �=0.1, whereas plots �d�–�f� correspond to
the same � value but �=0.2. Plots �a� and �d� correspond to
the case of zero field. Here, pair distribution function �11�
coincides with expression �7� and is isotropic. The bright
white shell describes the first peak; the next dark region
shows the first minimum. A weak pronounced second maxi-
mum can also be observed for the chosen volume concentra-
tion of 20% �the outermost bright region�. Even a weak mag-
netic field ��=1; plots �b� and �e�� leads to a drastic change
in the DHS microstructure. Along the magnetic-field direc-
tion the first minimum becomes deeper and wider, while the
second maximum becomes more pronounced perpendicular
to the magnetic-field direction. The latter effect is obvious,
since for the perpendicular direction the dipole-dipole inter-
action is repulsive. Thus, a second particle is located at some
distance away from the first one with higher probability than
at close contact. This behavior is more pronounced with high
field strength ��=5; plots �c� and �f��. The probability of the
“head-to-tail” contact is quite high, and we observe a trend
of forming ferroparticle dimers. For larger concentrations
and larger dipolar forces a second maximum in parallel di-
rection also appears.

C. DSS pair distribution function

In our MD simulations the ferrofluid is modeled as a sys-
tem of DSS. The theory developed above can be easily
adapted to this case in the following way: in Eq. �11� the
hard-sphere potential Uhs in the Boltzmann term is substi-
tuted by the soft-sphere potential Uss. This potential energy
of contacting soft spheres can be modeled, for example, by a
Yukawa potential �for ionic stabilized ferrofluids� or other
short range repulsions for ferrofluids with sterical stabiliza-

tion. Here we use the WCA potential given by Eq. �1�.
All multiparticle contributions are calculated in the same

way as for expression �11� using an effective hard-sphere
diameter de:

de = �
0

� �1 − exp�−
Uss

kBT
	
dr . �13�

The effective repulsive energy is set equal to the thermal
energy during the simulations, that is, �=kBT. This yields an
effective hard-sphere diameter de quite close to � :de

=1.016�.
The structure factor is obtained from g�r� via a Fourier

transform,

(b)(a)

(c) (d)

(f)(e)

FIG. 1. Anisotropy of the pair distribution function in a mag-
netic field. The contour plots are presented for function �11� in the
plane Or�r�, where r� and r� are the radius-vector components,
parallel and perpendicular to the magnetic-field direction. The di-
polar coupling constant is chosen as �=1, and the volume fraction
is �=0.1 for plots �a�–�c�, and �=0.2 for plots �d�–�f�. The values
of the dimensionless magnetic field are �=0 for plots �a� and �d�,
�=1 for plots �b� and �e�, and �=5 for plots �c� and �f�.
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S�q� = 1 + n� dre−iq·r�g�r� − 1� , �14�

where n is the ferroparticle number density, and q is the
scattering wave vector.

III. SIMULATION MODEL

We model the ferrofluids in our equilibrium MD simula-
tions as systems consisting of N spherical particles of diam-
eter �, distributed in a cubic simulation box of side length L.
Similarly to the theory, we assume particles to be monodis-
perse and exhibit a permanent point dipole moment m at its
center, which can freely rotate in 3D. The interaction energy
between two particles is the sum of the short range interac-
tion Eq. �1� and the dipolar interaction Eq. �2�. Periodic
boundary conditions are assumed along all directions. The
long-range dipole-dipole interactions are calculated using a
recently developed dipolar P3M algorithm �61�. The use of
the dipolar P3M method allows a much faster calculation of
the dipolar long-range correlations than the traditional three-
dimensional dipolar Ewald summation. The level of accuracy
of the algorithm for computing dipolar forces and torques is
set to ��10−4 in reduced units of force f�= f� /� and torque
��=� /�.

In the simulations, the particles move according to the
translational and rotational Langevin equations of motion
which read for particle i �62�

Mi
dvi

dt
= Fi − �Tvi + �i

T, �15�

Ii ·
d�i

dt
= �i + m � H − �R�i + �i

R, �16�

where Fi, �i, and H are the resulting force, torque, and the
external magnetic field acting on the particle i, respectively.
Mi and Ii are the mass and the inertia tensor of the particle.
The symbols �T and �R stand for the translational and rota-
tional friction constants, respectively. �i

T and �i
R are Gaussian

distributed random forces and torques with zero mean that
satisfy the usual fluctuation-dissipation relations. The vari-
ables can be given in dimensionless form as length r�=r /�,
dipole moment �m��2=m2 / �� /�3�, time t�= t�� / �M�2���1/2�,
temperature T�=kBT /�, and external magnetic field H�

=H��3 /��1/2. The simulations are performed at constant tem-
perature T�=1. Since we are only interested in static observ-
ables, the values of the mass, the inertia tensor, as well as
friction constants �T and �R are somewhat at our disposal.
The particle mass is chosen to be M =1, and the inertia tensor
I=1, the identity matrix, to ensure isotropic rotations. We
adopted �T=1, and �R=3 /4 which are observed in our sys-
tems to give a fast relaxation toward the equilibrium. A re-
duced time step �t��15�10−4 is used. The runs are started
from initial configurations with random particle positions
distributed over the simulation volume and randomly chosen
orientations for the dipole moments of the particles. Each
system is first equilibrated for a period of 7�105 time steps
to ensure that the results are independent of the starting con-

ditions. In order to read a proper and almost uncorrelated
sampling, measures are taken at intervals of 15�103�t� for
another period of 2�106 time steps. The number of particles
per system is N=1000 in regular simulations, although sev-
eral extra runs �up to N=10 000� have been performed in
order to make sure results do not suffer from finite-size ef-
fects. The simulation package ESPRESSO �63� has been used
to perform the simulations.

IV. RESULTS

In this section we compare the theoretical predictions
against the results from our MD simulations. For the sake of
clarity, the results are presented in two subsections: one for
the systems without magnetic field and one for systems with
an externally applied magnetic field in the z direction. As
pointed out in the introduction, the structure S�q� factor plays
a main role in the characterization of a physical system.
Once the structure factor of a system is known, many other
important observables can be derived from it.

As in our previous numerical study �31�, we compute the
structure factor as

S�q� =
1

N���
i=1

N

sin�q · ri�
2

+ ��
j=1

N

cos�q · r j�
2� ,

�17�

where the wave vectors q have to be commensurate with the
periodic boundary conditions, i.e., q��qx ,qy ,qz�
= �2� /L��l ,m ,n�� �0,0 ,0�, where l, m, and n are integers.
For systems without an applied magnetic field, the fluid
structure is rotationally invariant, and a spherically averaged
structure factor S�q�, obtained by averaging over all wave
vectors of magnitude q= �q�, is enough to characterize these
systems. For the systems with a magnetic field applied along
the z direction, S�q� is anisotropic. Nonetheless, it has been
shown in previous studies �10,31,64� that it is enough to
characterize those systems two different structure factors:
one parallel to the magnetic field S�q�� and one perpendicular
to the magnetic field S�q��, namely,

S�q�� =
1

N���
i=1

N

sin�q�zi�
2

+ ��
j=1

N

cos�q�zj�
2� , �18�

S�q�� =
1

N���
i=1

N

sin�q� · rxy,i�
2

+ ��
j=1

N

cos�q� · rxy,j�
2� ,

�19�

where q� �qz= �2� /L�n, q���qx ,qy ,0�= �2� /L��l ,m ,0�,
and rxy,i= �xi ,yi ,0�. The rotational symmetry of the system
along the z axis allows us to average the perpendicular struc-
ture factor as S�q�� where q�= �q��=�qx

2+qy
2.

The approximations leading to Eq. �7� are justified, as
long as the correlations between the dipolar particles are
weak. Once they start to aggregate, forming chains, rings,
and other branched structures �23,35�, we expect the theoret-
ical description to break down. Figure 2 shows the depen-
dence of the fraction of particles not involved in clusters, at
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volume fraction � and dipolar coupling parameter �, for sev-
eral intensities of the magnetic field �. Clusters are defined
on the basis of an energy criteria �26�: two particles are con-
sidered to belong to a same cluster if their interacting energy
is smaller than 70% of the minimum energy that occurs when
both particles are separated by a distance � and the dipoles
are parallel; i.e., they are linked if U�0.7Umin where Umin
=−2m2 /�3. Different values of �=1, 1.5, 2, and volume frac-
tion �=0.005, 0.05, 0.15, and 0.25 are studied. As expected,
Fig. 2 shows that in increasing either � or � the number of
free particles reduces, although the fraction of particles in-
volved in clusters never exceed the 15% in the case of non-
magnetic field �=0. It is therefore advisable to take into
account only systems with dipolar coupling parameter �
�2 and volume fractions smaller than ��0.25 in our com-
parison.

A. Systems without an externally applied magnetic field

Figures 3 and 4 show the comparison of the isotropic
structure factor S�q� between theory �lines� and the numeri-
cal simulations �open circles� for different values of the di-
polar coupling parameter �=1, 1.5, and 2 at fixed volume
fractions �=0.15 and �=0.25, respectively. A good agree-
ment between theoretical predictions and simulation results
is observed for wave vectors q��3 in the case of �=1 and
q��6 for �=1.5,2.

For lower values of q spurious peaks in the theoretical
predictions are observed, especially at high values of �. We
attribute this to the fact that at low wave vectors the structure
factor is sensitive to long-range many-body effects, while the
present theory is limited to four-body effects. To get the cor-
rect behavior at low wave vectors, more terms need to be
added to the virial expansion in powers of � �Eqs. �7� and
�11�� to take into account that the dipole-dipole interaction
dominates over the hard-sphere part. When ��1 the ex-
pected monotonic behavior of a hard-sphere system is recov-
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FIG. 2. Simulation results for the fraction of particles in the
system that is not forming clusters. We use the energy criteria at
70%; i.e., if the dipolar energy between two particles is larger than
70% of the maximum energy two particles can have at a distance
equal to the diameter of one particle, then we say that the particles
are linked and form a cluster. Plots �a�, �b�, and �c� show results for
�=1, 1.5, and 2, respectively. Different intensities of external mag-
netic field are shown ranging from zero �=0 up to a value of the
Langevin parameter �see text� of �=5. As one would expect, by
increasing either the dipolar coupling � or the magnetic field � the
number of “free” particles decreases. In the most unfavorable case,
around 22% of particles participate in the formation of clusters.
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�=0.15 with no applied field, one from the simulations �circles� and
one from the analytical theory �solid line�. The value of � changes
from top to bottom from �=1, to �=1.5, and �=2.
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ered at low wave vectors. The calculation of the five-particle
contribution �5

d�r� and higher orders is mathematically quite
involved and it will be aimed at in a subsequent work.

The mismatch between theory and simulations increases
with �. This is expected to occur due to the increase in the
number of particles involved in the formation of clusters; see
Fig. 2. Figures 3 and 4 clearly show that the upper boundary
of the model lies around ��2. Remarkably the rod model
developed by Pyanzina et al. �36� has been observed to de-
scribe quite accurately the structure factors obtained in MD
simulations for values of � in the range 2–5. Unfortunately
this model cannot be applied to the nonaggregate regime �
�2 because the Pyanzina approach assumes the existence of
aggregates larger than one particle in the system. We should
stress at this point that the Pyanzina model and the theory we
propose are complementary. With the help of both models, it
is possible to predict the structure factors in ferrofluids up to
the point where the formation of branched structures plays a
dominant role �which typically occurs for ��5�. Therefore,
the combination of both models allows the description of real
ferrofluid systems on a broad parameter regime.

When the volume fraction � increases �at constant ��, the
mean distance among particles reduces and correlations be-
come stronger. This effect can be observed by comparing in
Figs. 5 and 6 the height of peaks which are higher at larger
volume fractions. Figure 5 depicts the position of the first
physical maximum qmax� as a function of the volume frac-
tion � for different values of the dipolar coupling parameter
�. A clear shift toward larger wave vectors q is observed in
Fig. 6 at larger volume fractions �, which points to the fact
that correlation between particles occurs at shorter distances.
In addition, Fig. 6 shows that at constant volume fraction
there is a shift toward larger wave vectors when the coupling
parameter � increases. The behavior observed in Fig. 6, in
our opinion, is compatible with the fact that the radial distri-
bution function g�r� is known to be an expansion in powers
of the concentration �, and S�q� is linked to g�r� via Eq.
�14�. Thus, at low concentration values, one expects the lin-
ear term with � to dominate, and qmax should exhibit a linear
behavior with �.

It could be tempting to try to relate the existence of the
first peak of S�q� to the formation of cluster structures: in
Fig. 2, it has been shown that the percentage of particles
involved in clusters increases with � and therefore it could
significantly modify the structure factor even at ��2. But
this last argument seems to be in contradiction with the ob-
servation that at fixed volume fraction �i.e., similar free mean
distance between particles� the height of the peaks remains
roughly the same as observed in Figs. 3 and 4. If clusters
were playing a dominant role, one should expect significant
changes in the height of the structure factors when � is in-
creased. Thus, one should rule out the possibility that the
shape of the structure factors is dominated by a few clusters
in the system. Instead, the observed structure factors are
mainly due to the correlations between particles which do
not aggregate. Thus, when dealing with structure factors, one
must be cautious doing a straight identification of the peaks
with chains or other types of clusters.

B. Systems with an externally applied magnetic field

The introduction of an external magnetic field can trigger
the formation of chain aggregates �31�. Such aggregates rep-
resent strong correlations among particles that the present
theory cannot take into account because we neglect them
when we truncate the virial expansion. A rough estimate of
the range of validity of the theory when external magnetic
fields are applied can be obtained from Fig. 2. Imposed fields
should not exceed Langevin parameters beyond ��5 be-
cause for larger values the fraction of particles involved in
clusters is significant. Langevin parameters ��=0.5,1 ,5� are
considered to benchmark the theory in the three different
regimes where the magnetic-field effects are smaller, similar,
and stronger than thermal effects. Similar values for param-
eters � and � as in Sec. IV A are considered.

The external magnetic field is imposed along the z direc-
tion, and therefore an anisotropic behavior of the structure
factors S�q� is expected along this direction. For this reason
we study both the parallel S�q�� and the perpendicular S�q��
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FIG. 4. Same as in Fig. 3 but for volume fraction �=0.25.
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structure factors to the direction of the magnetic field which
have been computed using Eq. �18�.

Figures 6 and 7 show a comparison of the structure fac-
tors parallel S�q�� and perpendicular S�q�� to the magnetic-
field direction for several values of the area fraction �, the

dipolar coupling parameter �, and the relative strength of the
magnetic field �. The theoretical and numerical structure fac-
tors parallel to the magnetic field show a reasonable agree-
ment for �=1 and ��5. The worst results are observed in
the case �=2 and �=5 where the number of particles ex-
pected to be involved in clusters is quite substantial and
therefore the qualitative matching with the numerical simu-
lations is partially lost. Nonetheless, it should be stressed that
even for these high values of � and �, the theory still pro-
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vides a significant physical insight about the structure factor
parallel to the external magnetic field �see Fig. 6�c��.

For the case of the perpendicular component of the struc-
ture factor, see Fig. 6�a�, the theory describes very well the
behavior for �=1 and �=1. The description is also adequate
for �=1 and �=5 although at high densities only the behav-
ior for long wave vectors is correctly depicted by the theory.
In the case of �=2 and �=5 the theory fails to provide an
adequate description of the structure factor. When comparing
Figs. 6�c� and 7�c�, it is observed that at large values of the
dipolar coupling and magnetic field the parallel component
of the structure factor is better described by the theory than
the perpendicular component. This behavior might be caused
by the influence of the triangle �three-particle� diagram: the
three-particle term proportional to �3 which is the leading
contribution of the nonincluded terms in Eq. �7�. We argue
that three-particle effects are less important in parallel direc-
tion to the field because the main contribution comes from
conformations close to the parallel alignment of the three
particles head-to-tail along the field, which roughly is similar
to the interaction of two dimers. On the other hand, in the
perpendicular direction, the main contribution comes from
conformations close to having two particles aligned along
the field while the third dipole is perpendicular to it. That
third dipole strongly interacts with the other two simulta-
neously, and therefore, in the perpendicular case, the ne-
glected three-particle term is expected to be larger than in the
parallel case.

As in the case of zero magnetic field �see Sec. IV A�, the
position of the first peak in the parallel and perpendicular
components of the structure factor �S�q�� and S�q��� moves
toward large wave vectors and its height increases when the
volume fraction � is increased keeping � and � constant.
These results can be explained in a similar way as for the
non-magnetic-field case: more particles imply shorter dis-
tances among them and stronger correlations. On the other
hand, the behavior of the two components is different when
the dipolar coupling parameter � is increased, keeping � and
� constant. In the parallel component the first peak moves
toward large wave vectors and its height increases when �
increases. For the perpendicular component the behavior is
the inverse: when � increases, the peaks reduce their height
and the wave vectors are shifted toward lower values. This
behavior comes from the fact that in the presence of a mag-
netic field, when � increases, the particles increase their cor-
relations along the direction of the magnetic field while the
correlations are weakened along the perpendicular direction.

Figure 8 shows a comparison of the changes in the shape
of the perpendicular structure factor when � is increased for
different values of the strength of the magnetic field and the
volume fraction �. As the different plots in Fig. 8 depict, the
behavior of the perpendicular component of the structure fac-
tor at low volume fractions �=0.05 is very different from
that observed at higher volume fractions �=0.25. The differ-
ences in shape are even more notable when the strength of
the magnetic field is increased. Figure 8�b� shows that the
slope of the structure factor at low wave vectors changes
gradually from positive to negative when the dipolar cou-
pling � increases. A similar trend can be observed in plot
8�a� although it is less pronounced. Nonetheless, the behav-

ior seems to be different at higher volume fractions as dem-
onstrated in plot 8�c�. At low volume fractions some long-
range correlation seems to exist along the perpendicular
direction that is induced by the magnetic field.
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V. CONCLUSIONS

In this work we have presented a theoretical framework to
predict the structure factors observed in dipolar soft-sphere
fluids when the aggregation among particles can be ne-
glected. The comparison of the theory against MD simula-
tions here shows that a good agreement between theory and
numerical simulations can be observed when the fraction of
particles involved in clustering is low, i.e., for small values
of the dipolar coupling constant ��2, and small volume
fractions ��0.25. In the case that external magnetic fields
are present, the theoretical predictions show again remark-
able agreement with simulation results for Langevin param-
eters ��5. Below these bounds, for q vectors q�3 the
theory is able to provide an almost quantitative description of
the structure factors. The analysis of the position of the peak
maximum positions shows that in both theory and simula-
tions, a shift toward higher wave vectors is expected when

either � or the volume fraction � is increased. In the regime
of validity of the theory, in addition to the prediction of the
structure factors and hence of the pair distribution function,
it can be used to account for the behavior of associated ob-
servables such as pressure, free energy, heat capacity, chemi-
cal potential, as well as other thermodynamic functions.

We regard the present theory as complementary to the rod
model developed by Pyanzina et al. �36� because it covers
the region of low values of the dipolar coupling parameter �
where the Pyanzina model is not valid. The combined use of
both theories leads to an accurate description of the structure
factor for a broad range of dipolar soft-sphere systems.
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